### ANIONE

#### ANION EXCHANGE MEMBRANE ELECTROLYSIS FOR RENEWABLE HYDROGEN PRODUCTION ON A WIDE-SCALE



| 875024                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Panel 1 – H2 production                                                                                                                                                                     |
| FCH-02-4-2019: New anion exchange membrane electrolysers                                                                                                                                    |
| EUR 1 999 995                                                                                                                                                                               |
| EUR 1 999 995                                                                                                                                                                               |
| 1.1.2020-31.12.2022                                                                                                                                                                         |
| Consiglio Nazionale delle Ricerche,<br>Italy                                                                                                                                                |
| Hydrolite Ltd, Université de<br>Montpellier, TFP Hydrogen Products<br>Ltd, Hydrogenics Europe NV, IRD<br>Fuel Cells A/S, Uniresearch BV,<br>Centre national de la recherche<br>scientifique |
|                                                                                                                                                                                             |

https://anione.eu/

#### **PROJECT AND OBJECTIVES**

ANIONE aims to develop a high-performance, cost-effective and durable anion-exchange membrane (AEM) water electrolysis technology. The approach taken involves using an AEM and ionomer dispersion in the catalytic layers for hydroxide ion conduction. The project aims to validate a 2 kW AEM electrolyser with a hydrogen production rate of about 0.4 Nm<sup>3</sup>/h (technology readiness level (TRL) 4). Advanced AEMs have been developed in conjunction with non-critical raw material non-CRM high-surface-area electrocatalysts and membrane electrode assemblies. These advanced AEMs have shown promising performance and stability.

#### **NON-QUANTITATIVE OBJECTIVES**

- Enhanced oxygen evolution catalyst. ANIONE aims to develop an advanced non-CRM Ni- and Fe-based catalyst for the oxygen evolution reaction, providing reduced overpotential and enhanced stability.
- Enhanced hydrogen evolution catalyst. ANIONE aims to develop an advanced non-CRM Ni-based catalyst for the hydrogen evolution reaction, providing reduced overpotential and enhanced stability.
- Advanced cost-effective membrane. ANIONE aims to develop cost-effective advanced AEMs with proper hydroxide ion conductivity and stability.
- Process implementation. ANIONE aims to develop an AEM electrolysis operating mode providing enhanced stability.

 AEM electrolysis hardware components. ANIONE aims to implement advanced AEM electrolysis components in terms of diffusion layers and current collectors.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- A highly conductive and chemically stable hydrocarbon ionomer/membrane for AEM water electrolysis.
- ANIONE has produced reinforced and composite AEM hydrocarbon membranes for water electrolysis showing the capability to operate at higher temperatures.
- It has also produced a high-performing and electrochemically stable NiFe oxide, oxygen evolution, anode electrocatalyst for AEM water electrolysis.
- Enhanced catalyst-coated electrode-based membrane electrode assemblies for AEM water electrolysis.
- It has also produced large-area membraneelectrode assemblies based on non-CRMs performing similarly to small-area membrane electrode assemblies.

#### **FUTURE STEPS AND PLANS**

- Large area stack assembling and testing will be carried out.
- There will be full validation of functional materials at the stack level.

| Target source                               | Parameter                                                       | Unit                | Target  | Achieved to<br>date by the<br>project | Target achieved? | SoA result<br>achieved to<br>date (by others) | Year of SoA<br>target |
|---------------------------------------------|-----------------------------------------------------------------|---------------------|---------|---------------------------------------|------------------|-----------------------------------------------|-----------------------|
|                                             | Cell voltage at 1 A/cm <sup>2</sup> (cell performance at 45 °C) | ۷                   | 2       | 1.75                                  |                  | 1.67                                          | 0000                  |
|                                             | Degradation rate: voltage increase at 1 A/cm <sup>2</sup>       | mV/h                | < 0.005 | < 0.005                               | $\checkmark$     | 2                                             | 2020                  |
| Project's own<br>objectives and<br>AWP 2019 | Membrane conductivity                                           | mS/cm               | 50      | 105                                   | $\checkmark$     | 80                                            | -                     |
|                                             | Maximum operating temperature                                   | °C                  | 90      | 90                                    | $\checkmark$     | 60                                            | 2022                  |
|                                             | Series resistance                                               | ohm.cm <sup>2</sup> | < 0.07  | 0.06                                  | $\checkmark$     | 0.1                                           |                       |







# CHANNEL

#### DEVELOPMENT OF THE MOST COST-EFFICIENT HYDROGENPRODUCTIONUNITBASEDONANION EXCHANGE MEMBRANE ELECTROLYSIS



| Project ID:                                      | 875088                                                                                                                                                        |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                       |
| Call topic:                                      | FCH-02-4-2019: New anion<br>exchange membrane electrolysers                                                                                                   |
| Project total<br>costs:                          | EUR 1 999 906.25                                                                                                                                              |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 1 999 906.25                                                                                                                                              |
| Project period:                                  | 1.1.2020-30.6.2023                                                                                                                                            |
| Coordinator:                                     | SINTEF AS, Norway                                                                                                                                             |
| Beneficiaries:                                   | Enapter SRL, Evonik Creavis GmbH,<br>Shell Global Solutions International<br>BV, Evonik Operations GmbH,<br>Norwegian University of Science and<br>Technology |

https://www.sintef.no/projectweb/ channel-fch/

#### **PROJECT AND OBJECTIVES**

CHANNEL aims to build a cost-efficient 2 kW anion-exchange membrane (AEM) water electrolyser able to operate at differential pressure and under dynamic operation, optimal for producing high-quality, low-cost green hydrogen from renewable energy sources. CHANNEL will conduct a techno-economic analysis and determine detailed future size and cost targets for AEM electrolysers. It will identify markets and their requirements, establishing the production quantities essential to meet market needs, accounting for the expected cost decrease.

#### **NON-QUANTITATIVE OBJECTIVES**

- The project aims to contribute to science and technology through the submission of journal articles for publication and through conference contributions.
- The CHANNEL promotional video was released in early 2021.
- Two students from the University of St Andrews were trained and have been working on the project.
- CHANNEL aims to contribute to the AEM test protocol harmonisation workshop alongside NEWELY and ANIONE.
- The transient AEM model code is to be released on a public platform (GitHub).
- Education: two PhD students (Forschungszentrum Jülich) and one postdoctoral researcher (Norwegian University of Science and Technology) were hired as part of the project.

### CHANNEL '

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- Highly active and durable hydrogen and oxygen evolution reaction electrocatalysts were developed and production was scaled up.
- The single-cell electrolyser performance target of 1.85 V at 1 A/cm<sup>2</sup> using a non-PGM electrocatalyst was achieved.
- High-performance AEMs were developed.
- Stack design has been finalised and the deliverable was due to be submitted by the end of March 2023.

#### **FUTURE STEPS AND PLANS**

- A journal article based on the modelling of the transient pseudo-two-dimensional (P2D) AEM model and simulation of electrode catalyst loading and composition as a function of KOH concentration, temperature and cell current density is in the process of being published, offering additional insight into the drivers of AEM cell performance and assisting optimisation activities.
- The model will be shared through an opensource modelling system to allow others in the research community to utilise it to make informed decisions on how best to optimise AEM electrolyser technologies.
- A demonstration of the preliminary AEM stack prototype will take place, as will the assembly of the preliminary stack and validation. This is in addition to finalising the stack design.

| Target<br>source  | Parameter                                         | Unit  | Target                                      | Achieved to date<br>by the project | Target achieved?                                       | SoA result achieved<br>to date (by others)                                             | Year of reported<br>SoA result |
|-------------------|---------------------------------------------------|-------|---------------------------------------------|------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------|
|                   | OER catalyst performance                          | mV    | < 300 (at 10 mA/cm²<br>1 M KOH)             | 237 (1 M KOH)<br>270 (0.1 M KOH)   | $\checkmark$                                           | 250 at 10 mA/cm <sup>2</sup> (Ir-<br>based catalyst)                                   | 2023                           |
| Project's         | HER catalyst performance                          | mV    |                                             |                                    | 30 at – 10 mA/cm²<br>(Pt-based catalyst) in<br>1 M KOH | 2023                                                                                   |                                |
| own<br>objectives | OER catalyst stability                            | mV    | < 25 degradation over<br>1 000 hours in RDE | 33                                 | ll<br><sup>2</sup><br><sup>2</sup><br><sup>3</sup>     |                                                                                        |                                |
|                   | HER catalyst stability                            | mV    | < 25 degradation over<br>1 000 hours in RDE | 26                                 | الزي                                                   | - N/A                                                                                  | N/A                            |
|                   | Single-cell performance (at 1 A/cm <sup>2</sup> ) | V     | 1.85                                        | 1.85                               | $\checkmark$                                           | 1.85                                                                                   | 2023                           |
| AWP 2019          | Membrane OH <sup>-</sup> conductivity (T = RT)    | mS/cm | 50                                          | < 50                               |                                                        | Approximately 120<br>(50-micron membrane<br>from Sustainion)<br>40-45 FAA-3 (Fumatech) | 2023                           |
|                   | Ionomer OH conductivity (60 °C)                   | mS/cm | Not specified                               | > 60                               | $\checkmark$                                           | N/A                                                                                    | N/A                            |





### **Demo4Grid**

#### DEMONSTRATION OF 4 MW PRESSURIZED ALKALINEELECTROLYSERFORGRIDBALANCING SERVICES



#### **PROJECT AND OBJECTIVES**

The main aim of this project is the commercial set-up and demonstration of a technical solution utilising above-state-of-the-art pressurised alkaline electrolyser technology to provide grid-balancing services in real operational and market conditions. The ultimate goal is to provide grid-balancing services to the transmission system operator (primary and secondary balancing services). The electrolysis plant will be installed in Völs near Innsbruck.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

The pressurised alkaline electrolyser has been installed. It has been producing hydrogen since 22 March 2022.



DEMO

4GRID

#### http://www.demo4grid.eu/

| Target source            | Parameter                                                                          | Unit            | Target | Achieved to<br>date by the<br>project              | Target<br>achieved? | SoA result<br>achieved to date<br>(by others) | Year of SoA<br>target |
|--------------------------|------------------------------------------------------------------------------------|-----------------|--------|----------------------------------------------------|---------------------|-----------------------------------------------|-----------------------|
|                          | H <sub>2</sub> production electrolysis, hot start from min. to max. power          | seconds         | 2      |                                                    |                     | 60                                            | _                     |
|                          | Start-up time KPIs from cold to<br>minimum part-load for alkaline<br>electrolysers | minutes         | 20     | 4–6 hours<br>depending<br>on thermal<br>conditions |                     | 30                                            | 2015                  |
| Project's own objectives | Minimum part-load<br>operation targets for alkaline<br>electrolysers               | % (full load)   | 20     |                                                    |                     | 30                                            |                       |
|                          | Ramp up                                                                            | % (full load)/s | 7      | 3                                                  |                     | 7                                             |                       |
|                          | Ramp down                                                                          | % (full load)/s | 10     | 2                                                  |                     | 10                                            | - N/A                 |







### Djewels

#### DELFZIJLJOINTDEVELOPMENTOFGREENWATER ELECTROLYSIS AT LARGE SCALE

| Project ID:                                      | 826089                                                                                                                                                                              |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                             |
| Call topic:                                      | FCH-02-1-2018: Demonstration<br>of a large-scale (min. 20 MW)<br>electrolyser for converting renewable<br>energy to hydrogen                                                        |
| Project total<br>costs:                          | EUR 41 967 250                                                                                                                                                                      |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 10 999 999                                                                                                                                                                      |
| Project period:                                  | 1.1.2020-31.12.2025                                                                                                                                                                 |
| Coordinator:                                     | Nobian Industrial Chemicals BV,<br>Netherlands                                                                                                                                      |
| Beneficiaries:                                   | McPhy Energy Italia SRL,<br>BioMethanol Chemie Nederland BV,<br>McPhy Energy Deutschland GmbH,<br>Industrie De Nora SpA-IDN, Hinicio<br>SA, McPhy Energy, NV Nederlandse<br>Gasunie |

#### **PROJECT AND OBJECTIVES**

Djewels demonstrates the operational readiness of the 20 MW electrolyser for the production of green fuels (green methanol) in real-life industrial and commercial conditions. It will bring the technology from technology readiness level 7 to 8 and lay the foundation for the next scale-up step: a 100 MW electrolyser at the same site. Djewels will enable the development of the next generation of pressurised alkaline electrolysers by developing more cost-efficient, better-performing high-current-density electrodes, and is preparing for the mass production of the stack and scale-up of the balance-of-plant components.

#### **NON-QUANTITATIVE OBJECTIVES**

**Safety performance.** The design has been finalised and the hazard and operability analysis has been completed.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- The Djewels 1 design was finalised.
- An irrevocable permit was issued.
- Testing of the 1 MW stack has started.

#### **FUTURE STEPS AND PLANS**

- Stack testing and optimisation will be completed.
- The investment decision is expected to be made in Q2 2023.
- Ground breaking is expected to take place in Q3 2023.
- Construction is expected to be completed in 2025.

#### QUANTITATIVE TARGETS AND STATUS

https://djewels.eu

| Target source             | Parameter                                   | Unit               | Target | Target achieved? |
|---------------------------|---------------------------------------------|--------------------|--------|------------------|
| Project's own objectives  | System nominal capacity                     | MW                 | 25     |                  |
|                           | Energy consumption                          | kWh/kg             | < 52.8 |                  |
| MAWP addendum (2018-2020) | Degradation                                 | %/year             | 0.72   |                  |
|                           | Flexibility with degradation below 2 %/year | % of nominal power | 3-110  |                  |





### GAMER

#### GAMECHANGERINHIGHTEMPERATURESTEAM ELECTROLYSERS WITH NOVEL TUBULAR CELLS AND STACKS GEOMETRY FOR PRESSURIZED HYDROGEN PRODUCTION



| Project ID:                                      | 779486                                                                                                                                                                                                                                    |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                                                                                   |
| Call topic:                                      | FCH-02-2-2017: Game changer high<br>temperature steam electrolysers                                                                                                                                                                       |
| Project total<br>costs:                          | EUR 2 998 951.25                                                                                                                                                                                                                          |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 2 998 951.25                                                                                                                                                                                                                          |
| Project period:                                  | 1.1.2018-30.9.2022                                                                                                                                                                                                                        |
| Coordinator:                                     | SINTEF AS, Norway                                                                                                                                                                                                                         |
| Beneficiaries:                                   | MC2 Ingenieria y Sistemas SL,<br>CRI EHF, CoorsTek Membrane<br>Sciences AS, Shell Global Solutions<br>International BV, Universitetet i Oslo,<br>Stiftelsen SINTEF, Agencia Estatal<br>Consejo Superior de Investigaciones<br>Científicas |

https://www.sintef.no/projectweb/gamer/

#### **PROJECT AND OBJECTIVES**

GAMER is developing a novel cost-effective tubular proton ceramic electrolyser (PCE). The project focuses on a novel 'tube-in-shell' single engineering unit (SEU) design in which each tubular cell is placed in a steel shell, which has all necessary gas inlet/outlet connections. The steel shell also acts as a pressure containment vessel. The SEU stack technology is operational at 600 °C in pressurised operation. The main objectives of the project are to:

- design an innovative electrolysis system integrated in a renewable methanol plant with efficient thermal coupling of heat source (waste heat or heat from a renewable geothermal source);
- develop a high-volume cost-effective tubular SEU technology;
- assemble the novel SEUs and necessary balanceof-plant (BoP) equipment in a 10 kW prototype for pressurised operation;
- carry out techno-economic evaluation and life cycle analysis (LCA) of the integrated technology.

#### **NON-QUANTITATIVE OBJECTIVES**

The project has developed a novel design for a PCE stack in the form of tube-in-shell SEU operational at 600 °C and operated at up to 10 bar total pressure for more than 1 000 hours. It has also designed a 10 kW system, including assemblies of SEUs integrated in racks in a hot box, with BoP and power electronics developed for pressurised operation, delivering hydrogen with an output pressure of at least 30 bar. The containerised plant has been built and commissioned by Agencia Estatal Consejo Superior de Investigaciones Científicas. It has also been used to test two racks (each containing 16 SEUs) at a pressure of up to 7 bar. Due to some technical limitations and the project coming to an end, no more testing could be carried out. The plant will be exploited after project completion as part of the follow-up PROTOSTACK project, a new Clean Hydrogen JU project. The targeted production volume of the SEUs by CTMS was successfully achieved in the project, with reproducible results achieved when comparing the performance

of the individual functional layers on both short segments (4–5 cm<sup>2</sup>) and upscaled tubular cells (60 cm<sup>2</sup>). The project demonstrates that PCE performance is improved by increasing the operational pressure from ambient pressure to at least 10 bar (in terms of both increasing the faradaic efficiency and reducing the cells' area-specific resistance).

GAMER

#### **PROGRESS AND MAIN ACHIEVEMENTS**

Sixteen SEUs were tested in pressurised operation up to 10 bar at 600 °C. Good reproducibility was achieved after optimisation of the manufacturing process and steam electrode architectures. The stability of an SEU operating at 600 °C for more than 500 hours at 10 bar was successfully demonstrated in the project, while operated at a constant current density of 0.3 A/cm<sup>2</sup> (steam utilisation of 60 %).

The second rack of 16 SEUs was tested at atmospheric pressure at three different temperatures (600 °C, 575 °C, 550 °C). At 600 °C and atmospheric pressure, H<sub>2</sub> production of 0.47 NI/min and a faradaic efficiency of 61 % were reached by applying a current of 100 A.

Techno-economic analysis and LCA have been conducted on this technology, integrated in various user cases (ammonia plant, refineries, geothermal plant). The results of this work show that a projected upscaled technology can reach a system cost below 8.8 M€/(t/d). Furthermore, a roadmap for further cost reduction below 2.7 M€/(t/d) post 2020, which relies on both the reduction of system cost and improved cell performance, has been set out.

#### **FUTURE STEPS AND PLANS**

- The finalisation of rack assembly and quality assurance is in progress.
- Integration of racks in the 10 kW testing unit and commissioning will take place. Testing will start with one rack, with the progressive integration of the other.
- The testing plant will be used in a new project named PROTOSTACK, funded by the Clean Hydrogen Joint Undertaking.

| Target source               | Parameter                                                                                         | Unit                | Target | Achieved to<br>date by the<br>project | Target<br>achieved? | SoA result<br>achieved to<br>date (by oth-<br>ers) | Year of SoA<br>target |
|-----------------------------|---------------------------------------------------------------------------------------------------|---------------------|--------|---------------------------------------|---------------------|----------------------------------------------------|-----------------------|
|                             | ASR of cell at 600 °C at 3 bar in electrolysis mode                                               | ohm.cm <sup>2</sup> | 2      | 2.5                                   | کی<br>ا             | < 2                                                | 2022                  |
|                             | Faradaic efficiency of the SEU at 3 bar at 0.1 mA/cm <sup>2</sup> at 600 $^\circ\mathrm{C}$       | %                   | > 85   | 95                                    | $\checkmark$        | > 85                                               | 2020                  |
| Project's own<br>objectives | Degradation rate max. decrease of the voltage after 500 hours at 600 °C at 100 mA/cm <sup>2</sup> | %/kh                | 1.2    | < 5                                   | رې<br>الرې          | N/A                                                | 2021                  |
|                             | System cost                                                                                       | M€                  | 8.8    | 4.2-8.9                               | $\checkmark$        | N/A                                                | N/A                   |
|                             | Hydrogen cost                                                                                     | €/kg                | 2.7    | 4.2-7.4                               | رې<br>ا             | N/A                                                | N/A                   |







# GrInHy2.0

#### GREEN INDUSTRIAL HYDROGEN VIA STEAM ELECTROLYSIS

| Project ID:   | 826350                                                                                           |
|---------------|--------------------------------------------------------------------------------------------------|
| PRD 2023:     | Panel 1 – H2 production                                                                          |
| Call topic:   | FCH-02-2-2018: Demonstration<br>of large-scale steam electrolyser<br>system in industrial market |
| Drainat total |                                                                                                  |

|                                                  | System in industrial market                                                                                                                     |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Project total<br>costs:                          | EUR 5 882 492.50                                                                                                                                |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 3 999 993.25                                                                                                                                |
| Project period:                                  | 1.1.2019-31.12.2022                                                                                                                             |
| Coordinator:                                     | Salzgitter Mannesmann Forschung<br>GmbH, Germany                                                                                                |
| Beneficiaries:                                   | Paul Wurth SA, Sunfire GmbH,<br>Salzgitter Flachstahl GmbH,<br>Tenova SpA, Commissariat<br>à l'énergie atomique et aux énergies<br>alternatives |

#### https://salcos.salzgitter-ag.com/de/ grinhy-20.html

**QUANTITATIVE TARGETS AND STATUS** 

#### **PROJECT AND OBJECTIVES**

GrInHy2.0 is about implementing the world's biggest high-temperature electrolyser, with a capacity of 720 kW alternating current and electrical efficiency of 84 % lower heating value. During the assessment of the technology's carbon direct avoidance potential for the future European steel industry, the electrolyser will produce more than 100 t of green hydrogen based on steam from industrial waste heat produced over > 13 000 operational hours from steel production in Salzgitter.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- Electrolyser scale-up to 720 kWel and 200 Nm<sup>3</sup>H<sub>2</sub>/h was successful.
- The electrical efficiency target of 84 % lower heating value was reached.
- By the end of 2022, the system had been operating for more than 14 000 hours.
- Stack degradation at 15 mΩcm<sup>2</sup>.kh-1 is below what was expected.

- Production of more than 100 t of climate-neutral hydrogen was achieved.
- Electrolyser investment costs were reduced to below 4 500 €/(kgH<sub>2</sub>/d).

#### **FUTURE STEPS AND PLANS**

The project was successfully concluded, and no further steps are planned.

| Target source               | Parameter                                          | Unit    | Target | Achieved to<br>date by the<br>project | Target achieved? | SoA result<br>achieved to<br>date (by others) | Year of<br>SoA target |
|-----------------------------|----------------------------------------------------|---------|--------|---------------------------------------|------------------|-----------------------------------------------|-----------------------|
|                             | Total production of green<br>hydrogen              | t       | 100    | 102                                   | $\checkmark$     | N/A                                           | 2017                  |
| AWP                         | Demonstration of hot start from min. to max. power | minutes | 5      | 15                                    |                  | 10                                            | 2018                  |
| 2018                        | Hours of operation                                 | hours   | 13 000 | 14 000                                | $\checkmark$     | 10 000                                        |                       |
|                             | Availability                                       | %       | 95     | 85                                    | ξζ.              | 66                                            | 2019                  |
| Project's own<br>objectives | Hours of continuous stack testing                  | hours   | 20 000 | 10 000                                |                  | 8 700                                         | 2019                  |





### Haeolus

#### HYDROGEN-AEOLIC ENERGY WITH OPTIMISED ELECTROLYSERS UPSTREAM OF SUBSTATION

| Project ID:                                      | 779469                                                                                                                                                                |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                               |
| Call topic:                                      | FCH-02-4-2017: Highly flexible<br>electrolysers balancing the energy<br>output inside the fence of a wind<br>park                                                     |
| Project total<br>costs:                          | EUR 8 740 110.00                                                                                                                                                      |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 4 997 738.63                                                                                                                                                      |
| Project period:                                  | 1.1.2018-31.12.2023                                                                                                                                                   |
| Coordinator:                                     | SINTEF AS, Norway                                                                                                                                                     |
| Beneficiaries:                                   | Communauté d'universités et<br>d'établissements université<br>Bourgogne-Franche-Comté, École<br>Nationale Superieure de Mécanique<br>et des Microtechniques Fundacion |

Nationale Superieure de Mécanique et des Microtechniques, Fundacion Tecnalia Research and Innovation, Hydrogenics Europe NV, Knowledge Environment Security SRL, Universita Degli Studi del Sannio, Université de Franche-Comté, Université de technologie de Belfort-Montbéliard, Varanger Kraft AS, Varanger KraftEnterprenor AS, Varanger KraftHydrogen AS, Varanger

#### http://www.haeolus.eu/

#### **QUANTITATIVE TARGETS AND STATUS**

#### **PROJECT AND OBJECTIVES**

The project has deployed a 1 t/day electrolyser, together with a storage tank and fuel cells for re-electrification, in connection with a wind farm in the remote village of Berlevåg in Norway. The objective is to test the operation of the electrolyser in different scenarios to demonstrate algorithms for energy storage, isolated grid operation and fuel production. After significant delays due to the COVID-19 pandemic, the project received a 2-year extension and is now following a new schedule.

#### **NON-QUANTITATIVE OBJECTIVES**

The objective is to promote the 'hydrogen valley' in Finnmark. Local authorities and business stakeholders are very interested in the project. Varanger Kraft has decided to proceed with building a distribution station, and local actors are involved in multiple multimillion-euro research and innovation proposals for further development.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

Aミ釣LU

- Varanger Kraft made its investment decision (EUR 4 million investment).
- · Fuel cells were refurbished and redeployed.
- A cloud control system was deployed and open-sourced.
- Demonstration is ongoing.

#### **FUTURE STEPS AND PLANS**

Demonstration is to be completed and results are to be analysed.



| Target source                 | Parameter   | Unit     | Target | Achieved to date by the project | Target achieved? |
|-------------------------------|-------------|----------|--------|---------------------------------|------------------|
| Project's own objectives      | CAPEX       | M€/(t/d) | 3      | 2.3                             | $\checkmark$     |
|                               | Efficiency  | kWh/kg   | 52     | 53.8                            | $\checkmark$     |
| MAWP addendum (2018-2020) and | Degradation | %/year   | 1.5    | 2                               |                  |
| AWP 2017                      | Cold start  | minutes  | 0.5    | 20                              | j<br>j           |
|                               | Hot start   | seconds  | 2      | 30                              | ألأ              |







### HYDROSOLbeyond

#### THERMOCHEMICAL HYDROGEN PRODUCTION IN A SOLAR STRUCTURED REACTOR: FACING THE CHALLENGES AND BEYOND



http://www.hydrosol-beyond.certh.gr/

#### **PROJECT AND OBJECTIVES**

HYDROSOL-beyond is a continuation of the Hydrosol-technology series of projects that focus on using concentrated solar power to produce hydrogen from the dissociation of water through redox-pair-based thermochemical cycles. The project is an ambitious scientific endeavour aiming to address the major challenges and bottlenecks identified during previous projects and to further boost the performance of solar hydrogen production technology through innovative solutions that will also increase the potential of the technology's future commercialisation.

#### **NON-QUANTITATIVE OBJECTIVES**

- Heat recovery.
- Minimisation of the parasitic losses mostly related to the high consumption of inert gas.

#### Improvement of reactor design.

#### PROGRESS AND MAIN ACHIEVEMENTS

- Stable NiFe<sub>2</sub>O<sub>4</sub> lattice structures have been produced.
- A small-scale hybrid ceramic/metallic heat exchanger has been constructed and tested. The results were taken into account in the development of the full-scale heat exchanger.

- The production of NiFe<sub>2</sub>O<sub>4</sub> lattice structures for application on the tubular solar reactor at the solar platform has been scaled up.
- The scaled-up hybrid ceramic/metallic heat exchanger has been constructed and is ready for integration on the solar platform.

#### **FUTURE STEPS AND PLANS**

- The novel heat exchanger will be integrated in the existing solar platform. A smallscale apparatus has been manufactured and is being evaluated at the laboratory. The results will be taken into account in the development of the full-scale heat exchanger and its integration in the solar plant.
- The solar platform will be operated in H<sub>2</sub> production mode at the Plataforma Solar de Almería in Spain to run thermal tests on solar reactors.
- Operation of the solar reactor at the solar simulator facility at Forschungszentrum Jülich was achieved, with production of 8.8 gH<sub>2</sub>/cycle. The desired temperatures for the operation were achieved using less power than expected (150 kW from solar simulator lamps).

| Target source | Parameter                                                                                                                                                        | Unit       | Target | Achieved to date by the project | Target achieved? | SoA result<br>achieved to date<br>(by others) | Year of<br>SoA target |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------|---------------------------------|------------------|-----------------------------------------------|-----------------------|
| AWP           | Demonstration of the process<br>at realistic scale and in realistic<br>working conditions, using an<br>existing solar demonstration<br>facility (> 200 kW range) | kW/reactor | 250    | 150                             | ~~~~             | 250                                           |                       |
| 2018          | Durability                                                                                                                                                       | cycles     | 1 000  | 150                             |                  | 602                                           | 2018                  |
|               | Heat recovery rates of high-<br>temperature heat in excess of 60 %                                                                                               | %          | 60     | 46                              | _                | N/A                                           | -                     |







# **MultiPLHY**

MULTIMEGAWATT HIGH-TEMPERATURE ELECTROLYSERTOGENERATEGREENHYDROGEN FORPRODUCTIONOFHIGH-QUALITYCHEMICAL PRODUCTS

| Project ID: | 875123 |  |
|-------------|--------|--|

| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                 |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Call topic:                                      | FCH-02-2-2019: Multi megawatt<br>high-temperature electrolyser for<br>valorisation as energy vector in<br>energy intensive industry                                     |
| Project total<br>costs:                          | EUR 10 907 722.50                                                                                                                                                       |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 6 993 725.39                                                                                                                                                        |
| Project period:                                  | 1.1.2020-31.12.2024                                                                                                                                                     |
| Coordinator:                                     | Commissariat à l'énergie atomique et<br>aux énergies alternatives, France                                                                                               |
| Beneficiaries:                                   | Engie, Engie Energie Services, Neste<br>Engineering Solutions BV, Neste<br>Engineering Solutions Oy, Neste<br>Netherlands BV, Neste Oyj, Paul<br>Wurth SA, Sunfire GmbH |

#### **PROJECT AND OBJECTIVES**

MultiPLHY aims to install and integrate the world's first high-temperature electrolyser (HTE) system on a multi-MW scale at a biorefinery located in Rotterdam, the Netherlands, demonstrating both technological and industrial leadership of the EU in the application of solid oxide electrolyser cell (SOEC) technology. The central element of the project is the manufacture and demonstration of a multi-MW high-temperature electrolyser and its operation in a biorefinery. As a result, MultiPLHY promotes the SOEC-based HTE from technology readiness level 7 to 8.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

MULTIPLHY

team

y grid

3.5 MW<sub>eLAC</sub>

MULTIPLHY, 2.6 MW

¢

 The project demonstrated stack durability for more than 7 000 hours without H<sub>2</sub> production loss.

2.4 MW<sub>el, AC</sub> High-temperature electrolyser

(HTE)

- A new-generation HTE module was developed to decrease capital expenditure.
- FAT of all 12 modules has been completed, and the installation in Rotterdam is in progress.

#### **FUTURE STEPS AND PLANS**

Project tasks will be executed in accordance with a revised plan owing to a delay in completing some tasks. Tasks are continuously monitored regarding achievements and the timeline.

#### https://multiplhy-project.eu

#### **QUANTITATIVE TARGETS AND STATUS**

| Target source | Parameter                      | Unit      | Target | Target achieved? | SoA result achieved to date (by others) | Year of SoA<br>target |
|---------------|--------------------------------|-----------|--------|------------------|-----------------------------------------|-----------------------|
|               | Electrical consumption         | kWh/kg    | 85     |                  | 39.7                                    | 0017                  |
| AWP 2019      | H <sub>2</sub> production loss | %/1 000 h | < 1.2  |                  | 1.9                                     | 2017                  |
|               | Downtime                       | %         | 5      | ţŷ;<br>٣         | N/A                                     | N/A                   |



PRD 2023 PANEL H2 Production

### NEPTUNE

#### **NEXTGENERATION PEMELECTROLYSER UNDER NEW EXTREMES**



| Project ID:                                      | 779540                                             |
|--------------------------------------------------|----------------------------------------------------|
| Појеств.                                         | ////                                               |
| PRD 2023:                                        | Panel 1 – H2 production                            |
| Call topic:                                      | FCH-02-1-2017: Game changer<br>water electrolysers |
| Project total<br>costs:                          | EUR 1 927 335.43                                   |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 1 926 221.25                                   |
| Project period:                                  | 2.1.2018-30.4.2022                                 |
| Coordinator:                                     | ITM Power (Trading) Limited, United<br>Kingdom     |
| Beneficiaries:                                   | Consiglio Nazionale delle Ricerche,                |

Engie, IRD Fuel Cells A/S, Pretexo, Solvay Specialty Polymers Italy SpA

**OUANTITATIVE TARGETS AND STATUS** 

https://cordis.europa.eu/project/ id/779540

#### **PROJECT AND OBJECTIVES**

NEPTUNE addresses challenges associated with reducing capital costs and increasing production rates and output pressures of water electrolysis, which will be required to achieve large-scale application of polymer electrolyte membrane electrolysers. The project is developing a set of breakthrough solutions at the material, stack and system levels to increase hydrogen pressure to 100 bar and current density to 4 A/cm<sup>2</sup> for the base load, while keeping nominal energy consumption at < 50 kWh/kg of H<sub>a</sub>. The novel solutions will be validated by demonstrating a robust and rapid-response electrolyser.

#### **NON-OUANTITATIVE OBJECTIVES**

The objective was to extend the protocols for testing electrolysis systems under the new operating conditions (high temperature and pressure).

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- Under the project, a new simplified balance of plant for polymer electrolyte membrane electrolysis was designed and built to extend operating conditions.
- The membrane electrode assembly degradation rate achieved at 80 °C was 4.4 µV/h/ cell at 4 A/cm<sup>2</sup> in a test lasting more than 2 000 hours (single-cell level).
- At 90 °C, cell voltages of 1.74 V at 4 A/cm<sup>2</sup> and 1.98 V at 8 A/cm<sup>2</sup> were achieved, with noble metal loading of 0.34 mg/cm<sup>2</sup> (anode) and 0.1 mg/cm<sup>2</sup> (cathode).

#### **FUTURE STEPS AND PLANS**

The project has been completed.

| Target source               | Parameter                                                     | Unit      | Target | Achieved to date<br>by the project | Target achieved? | SoA result achieved to date (by others) | Year of SoA<br>target |
|-----------------------------|---------------------------------------------------------------|-----------|--------|------------------------------------|------------------|-----------------------------------------|-----------------------|
|                             | Anode catalyst loading per W                                  | mg/W      | 0.05   | 0.0459                             | $\checkmark$     | 0.23                                    |                       |
| Project's own<br>objectives | Cathode catalyst loading per W                                | mg/W      | 0.0071 | 0.0135                             |                  | 0.035                                   | 2018                  |
|                             | Efficiency degradation per<br>1 000 hours for LT electrolyser | %/1 000 h | 0.29   | 0.23                               | $\checkmark$     | 0.2                                     |                       |





PRD 2023 PANEL H2 Production

### NEWELY

#### NEXTGENERATIONALKALINEMEMBRANEWATER ELECTROLYSERSWITHIMPROVEDCOMPONENTS AND MATERIALS

| Project ID:                                      | 875118<br>Panel 1 - H2 production                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Call topic:                                      | FCH-02-4-2019: New anion exchange membrane electrolysers                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Project total cost                               | ts:EUR 2 892 889.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 2 204 846.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Project period:                                  | 1.1.2020-31.12.2022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Coordinator:                                     | Deutsches Zentrum für Luft- und<br>Raumfahrt eV, Germany                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Beneficiaries:                                   | Air Liquide Forschung und Entwicklung<br>GmbH, Commissariat á l'énergie<br>atomique et aux énergies alternatives,<br>Cutting-Edge Nanomaterials (CENmat)<br>UG Haftungsbeschrankt, DLR-Institut<br>Für Vernetzte Energiesysteme EV,<br>Fondazione Bruno Kessler, Korea Institute<br>of Science and Technology, Air Liquide SA<br>Membrasenz SARL, Propuls GmbH, Ústav<br>Makromolekulární chemie AV ČR v. v. i.,<br>Vysoká škola chemicko-technologická<br>v Praze, Westfälische Hochschule<br>Gelsenkirchen |

#### **PROJECT AND OBJECTIVES**

This project aims to redefine anion-exchange membrane water electrolysis (AEMWE), surpassing the current state of alkaline water electrolysis (WE) and bringing it one step closer to proton-exchange membrane WE in terms of efficiency, but at a lower cost. The three main challenges of AEMWE – membrane, catalyst and stack – are addressed by three small and medium-sized enterprises and a large hydrogen company supported by seven renowned research and development centres. With a prototypic five-cell stack at elevated pressure in a 2 000-hour endurance test, the performance of the state of the art (SoA) of AEMWE will be validated twice. This will have an impact on the cost of green hydrogen.

#### **NON-QUANTITATIVE OBJECTIVES**

The techno-economic assessment and life cycle assessment are expected to demonstrate a reduction of capital expenditure and operating expenses for AEMWE relative to proton-exchange membrane WE and alkaline WE. Data collection and evaluation are complete and under review.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

 The membrane electrode assembly (MEA) with OXYGN-N anode, H2GEN-M cathode (both catalysts from project partner CENmat) and commercial anion-exchange membrane (AEM)/ionomer achieves 2 V at 2 A/cm<sup>2</sup> in 0.1 M KOH. No irreversible degradation was seen in a 400-hour test.

- AEM conductivity of 62 mS/cm and area-specific resistance of 0.065 ohm.cm<sup>2</sup> were achieved.
- The project created a new method for AEM membrane reinforcement with covalent bonds between the matrix and the ionomer, with conductivity of 62 mS/cm.

#### **FUTURE STEPS AND PLANS**

NFWFI

- MEAs for the stack will be prepared at 200 cm<sup>2</sup>. Project materials will also be prepared, and targeted performance set. The long-term testing of the 25 cm<sup>2</sup> MEA is proceeding.
- Stack design will be finalised and constructed. The first draft has already been prepared and is awaiting finalisation of the configuration of components.
- The stack has not yet been put into operation at increased pressure.
- Long-term testing of the stack will seek to demonstrate the required stability. To date, testing has been up to 25 cm<sup>2</sup> (single cell). In-stack testing is still to be carried out.
- Data analysis for the life cycle assessment and cost analysis is at an advanced stage.

SoA result

#### https://newely.eu/

| Target source                    | Parameter                                                                                                   | Unit                       | Target                 | Achieved to date<br>by the project | Target achieved? | achieved to date<br>(by others) | Year of SoA<br>target |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|----------------------------|------------------------|------------------------------------|------------------|---------------------------------|-----------------------|
|                                  |                                                                                                             | Maxir                      | num AEMWE stac         | k size realised in the proj        | ect              |                                 |                       |
| Project's own objectives         | Stack power                                                                                                 | kW                         | 2                      | 0.075                              |                  | 2.4                             |                       |
| and MAWP addendum<br>(2018-2020) | Cell area                                                                                                   | Cm <sup>2</sup>            | 200                    | 25                                 | <u>_~</u> _      | N/A                             |                       |
|                                  | Pressure                                                                                                    | bar (relative)             | ≤ 40                   | 0                                  | ζώ               | ≤ 35                            | 2021                  |
| MAWP addendum                    | Energy consumption @ power                                                                                  | kWh/kg @ W/cm <sup>2</sup> | 53.6 @ 2               | 53.6 @ 3.6                         |                  | 53.6 @ 2.4                      | -                     |
| (2018-2020)                      | Corresponding to cell voltage @ current                                                                     | V @ A/cm <sup>2</sup>      | 2 @ 1                  | 2 @ 1.8                            |                  | 2 @ 1.2                         | -                     |
|                                  |                                                                                                             |                            | Non-P(                 | GM catalysts                       |                  |                                 |                       |
| Project's own objectives         | Added overpotentials (anode and cathode)                                                                    | mV                         | 415                    | 232                                | ,                | 250                             |                       |
| and MAWP addendum<br>(2018-2020) | Current density                                                                                             | mA/cm <sup>2</sup>         | 1                      | 1                                  | $\checkmark$     | 1                               | 2020                  |
|                                  | Stable operation for 2 000 hours, cell voltage gap after 2 000 hours of operation                           | mV                         | 50                     | No 2 000-hour<br>test yet          | £22              | < 2                             |                       |
| MAWP addendum<br>(2018-2020)     | Extrapolation to efficiency degradation at<br>rated power and assuming 8 000 hours of<br>operation per year | Extrapolated to<br>%/year  | Extrapolated<br>to 7.2 | No test yet                        | الدي             | < 0.3                           | 2021                  |
|                                  | Chemically, thermally and mechanically<br>stable AEM ionomer and membrane with<br>conductivity              | mS/cm                      | ≥ 50                   | 62                                 | $\checkmark$     | 80                              |                       |
|                                  | Area-specific resistance                                                                                    | ohm.cm <sup>2</sup>        | ≤ 0.07                 | 0.065                              |                  | 0.045                           | -                     |







### NewSOC

### NEXTGENERATION SOLID OXIDE FUEL CELL AND ELECTROLYSIS TECHNOLOGY

07/577

Draigat ID.

| Project ID:                                      | 874577                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Call topic:                                      | FCH-02-6-2019: New materials,<br>architectures and manufacturing<br>processes for solid oxide cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Project total<br>costs:                          | EUR 4 999 726.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 4 999 726.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Project period:                                  | 1.1.2020-30.6.2023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Coordinator:                                     | Danmarks Tekniske Universitet,<br>Denmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Beneficiaries:                                   | Aktsiaselts Elcogen, Ceres Power<br>Limited, Commissariat a l'énergie<br>atomique et aux énergies alternatives,<br>École polytechnique fédérale de<br>Lausanne, Ethniko Kentro Erevnas<br>Kai Technologikis Anaptyxis,<br>Fundacio Institut de Recerca de<br>L'energia de Catalunya, Hexis AG,<br>Idryma Technologias Kai Erevnas,<br>Instytut Energetyki, Nederlandse<br>Organisatie voor Toegepast<br>Natuurwetenschappelijk Onderzoek<br>TNO, Politecnico di Torino, SolydEra<br>SpA, Sunfire GmbH, Teknologian<br>tutkimuskeskus VTT Oy, Università<br>degli Studi di Salerno |

http://www.newsoc.eu/

#### QUANTITATIVE TARGETS AND STATUS

#### **PROJECT AND OBJECTIVES**

NewSOC aims to significantly improve the performance, durability and cost competitiveness of solid oxide cells and stacks compared with the state of the art, focusing on (i) structural optimisation and innovative architectures, (ii) alternative materials and (iii) innovative manufacturing. The project succeeded in improving the cells, yielding a 25 % increase in applicable current density and a 25 % lower area-specific resistance (ASR), which marked the first milestone. Progress was achieved for all proposed concepts, and specific plans were agreed with the industry partners for integration into their commercial platforms.

#### **NON-QUANTITATIVE OBJECTIVES**

- · Achieve redox stability in the cells.
- Produce a cell/stack with improved cycling stability.
- Reduce toxic organics/materials during manufacture.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

SoA SOC

- The integration of NewSOC development concepts into industrial platforms (cells and stacks) was achieved and tests were carried out.
- Quantities of toxic organics/materials were reduced through the development of a Co-free oxygen electrode. Cobalt was reduced in the protective coating for interconnects, and toxic solvents were removed for the deposition of sealants.
- A redox-stable cell with doped lanthanum chromite fuel electrodes was developed.

#### **FUTURE STEPS AND PLANS**

- The development of NewSOC concepts will be completed.
- Validation tests integrating the NewSOC developments into industrial cells and stacks will be completed.
- The 5 000-hour test is to be completed.

| Target source               | Parameter                                                                       | Unit              | Target | Achieved to date by<br>the project | Target achieved? |
|-----------------------------|---------------------------------------------------------------------------------|-------------------|--------|------------------------------------|------------------|
| Project's own<br>objectives | ASR (80 × 120 mm <sup>2</sup> solid power anode electrolyte half-cell)          | ohm.cm² at 650 °C | 0.4    | 0.5                                | ζζζ<br>Ι         |
|                             | ASR (Co-free cell, LSF oxygen electrode with improved microstructure)           | ohm.cm² at 650 °C | 0.4    | 0.4                                |                  |
|                             | Electrolysis current for operation with a degradation rate below 1 %/1 000 h $$ | A/cm <sup>2</sup> | 0.75-1 | 0.5 0 %/1 000 h                    | $\checkmark$     |
|                             | Electrolysis current for operation with a degradation rate below 1 $\%/1$ 000 h | A/cm <sup>2</sup> | 0.75-1 | 0.3 0.5 %/1 000 h                  | ·                |
|                             | Operating temperature                                                           | °C                | 650    | 650-700                            |                  |







### **OYSTER**

#### **OFFSHORE HYDROGEN FROM SHORESIDE WIND** TURBINE INTEGRATED ELECTROLYSER



| 101007168                                                                                                 |
|-----------------------------------------------------------------------------------------------------------|
| Panel 1 – H2 production                                                                                   |
| FCH-02-6-2020: Electrolyser module<br>for offshore production of renewable<br>hydrogen                    |
| EUR 5 025 093.51                                                                                          |
| EUR 4 999 843.00                                                                                          |
| 1.1.2021-31.12.2024                                                                                       |
| ERM, France                                                                                               |
| Element Energy, Orsted Wind Power<br>A/S, ITM Power (Trading) Limited,<br>Siemens Gamesa Renewable Energy |
|                                                                                                           |

**PROJECT AND OBJECTIVES** 

The overall aim of OYSTER is to justify, develop and demonstrate an electrolyser suitable for deployment in offshore environments. The end goal is to produce a marinised electrolyser that is integrated with offshore wind turbines to produce 100 % renewable, low-cost bulk hydrogen, while facilitating increased roll-out of offshore wind.

#### **NON-QUANTITATIVE OBJECTIVES**

- The project aims to develop an electrolyser system capable of operating reliably in an offshore environment.
- It aims to deploy and test a new MW-scale electrolyser designed for marine environments for 18 months, covering all seasons.
- It aims to complete a design exercise for an integrated offshore wind turbine electrolysis module, drawing on the lessons learned from the pilot trial and insights from expert partners in the offshore oil and gas sector. These lessons and insights will contribute to the basis of a detailed design of a complete offshore hydrogen production system.
- The project plans to undertake a preliminary front-end engineering and design study for a specific offshore wind farm site, linked to an existing industrial hydrogen customer.

It aims to formulate business cases for further deployment of large-scale electrolysis systems in offshore environments. A business case will be developed for the use of hydrogen across different applications, including hydrogen for industrial users, transport applications and heating, by exploiting the onshore gas networks for use in hydrogen distribution.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- Early versions of the water treatment system design and system modelling to be used for simulation of direct connected power electronics have been finalised. These will form the basis for the design used by Stiesdal.
- The location of the trial has been selected. Following investigation, a site in Zeeland, the Netherlands, was selected.

#### **FUTURE STEPS AND PLANS**

- Stiesdal will start design and marinisation work for the electrolyser, focusing on compartmentalisation and component specification for marinisation.
- A shoreside trial and data collection are expected to start in 2024.

| Target source | Parameter                                                                            | Unit              | Target  | Target achieved? |
|---------------|--------------------------------------------------------------------------------------|-------------------|---------|------------------|
|               | Electrolyser footprint                                                               | m²/MW             | 50      |                  |
|               | Maintenance cost                                                                     | €/(kg/year)       | 20      |                  |
| Project's own | Efficiency degradation at rated power                                                | %/1 000 h         | 0.11    | <br>503          |
| objectives    | Electrolyser CAPEX (at rated power), including ancillary equipment and commissioning | €/(kg/day)        | 800     |                  |
|               | Time for hot start (min. to max. power)                                              | seconds           |         |                  |
|               | Current density                                                                      | A/cm <sup>2</sup> | 0.2-0.4 |                  |





### PROMETEO

#### HYDROGEN PRODUCTION BY MEANS OF SOLAR HEATANDPOWERINHIGHTEMPERATURESOLID OXIDE ELECTROLYSERS



|                                                  | 404007404                                                                                                                                                                                    |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project ID:                                      | 101007194                                                                                                                                                                                    |
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                                      |
| Call topic:                                      | FCH-02-2-2020: Highly efficient<br>hydrogen production using solid<br>oxide electrolysis integrated with<br>renewable heat and power                                                         |
| Project total<br>costs:                          | EUR 2 765 206.25                                                                                                                                                                             |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 2 499 531.25                                                                                                                                                                             |
| Project period:                                  | 1.1.2021-30.6.2021                                                                                                                                                                           |
| Coordinator:                                     | Agenzia nazionale per le nuove<br>tecnologie, l'energia e lo sviluppo<br>economico sostenibile, Italy                                                                                        |
| Beneficiaries:                                   | Capital Energy Services SLU,<br>École Polytechnique Fédérale<br>de Lausanne, Fondazione Bruno<br>Kessler, Fundación Imdea Energia,<br>NextChem SpA, SNAM SpA, SolydEra<br>SA, Stamicarbon BV |
|                                                  |                                                                                                                                                                                              |

https://prometeo-project.eu

#### **PROJECT AND OBJECTIVES**

Prometeo aims to produce hydrogen from renewable heat and power sources using solid oxide electrolysis (SOE) in areas with low electricity prices associated with photovoltaics or wind. A 25 kWe SOE prototype (approximately 15 kg/day of H<sub>2</sub> production) will be developed and validated in the relevant environment, combined with intermittent sources: non-programmable renewable electricity and high-temperature solar heat with thermal energy storage. Partial-load operation, transients and hot standby periods will be studied.

#### **NON-QUANTITATIVE OBJECTIVES**

Demonstrate the capability to transfer the technology from component developers to system integrators and end users.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- The project defined end users' cases.
- Preliminary process flow diagrams were created.
- A thermal energy storage system was identified and was experimentally validated in the laboratory.
- · Process modelling tools were developed.

#### **FUTURE STEPS AND PLANS**

 Experimental determination of the performance map for the SOE stack and the balance of plant in the laboratory is in progress – it was expected to be complete by January 2023.

prometed

- Process flow diagrams for the 25 kWe pilot plant under different operation modes are being finalised. They were expected to be complete by March 2023.
- The integrated pilot plant (25 kWe) will be designed and built. The basic design is in progress. The pilot plant is expected to be shipped to the project site in the first half of 2024.
- Based on finalised process flow diagrams for the pilot plant (25 kWe), analysis of case studies at multi-MW scale will be performed. This was expected to start by April 2023.

| Target source               | Parameter                                                                                                                                                                                                                                                                                                                                  | Unit  | Target | Target<br>achieved? |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|---------------------|
|                             | Demonstrate $\ge$ 98 % availability of the electrolyser: hours in which the SOE has been kept at $\ge$ 650 °C (i.e. ready to start) v total hours                                                                                                                                                                                          | %     | 98     |                     |
|                             | Demonstrate the production of hydrogen by operation of > 1 000 hours: hours of experimental validation runs of the prototype                                                                                                                                                                                                               | hours | 1 000  |                     |
| Project's own<br>objectives | Demonstrate, using SOE with renewable heat integration, electrical efficiency of $\ge$ 85 % based on lower heating value (LHV) and specific energy consumption of < 39 kWh/kg H <sub>2</sub> in a relevant market-representative environment: power-to-hydrogen energy conversion efficiency of the heat-integrated SOE system (LHV basis) | %     | 85     |                     |
|                             | Obtain solar-to-hydrogen energy conversion efficiency from global solar radiation to $H_2$ energy (LHV basis): $\ge$ 10 %                                                                                                                                                                                                                  | %     | 10     |                     |







### REACTT

#### RELIABLE ADVANCED DIAGNOSTICS AND CONTROL TOOLS FOR INCREASED LIFETIME OF SOLID OXIDE CELL TECHNOLOGY



| Project ID:                                      | 101007175                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
| Call topic:                                      | FCH-02-3-2020: Diagnostics and<br>control of SOE                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Project total<br>costs:                          | EUR 2 712 322.50                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 2 712 322.50                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Project period:                                  | 1.1.2021-31.12.2023                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
| Coordinator:                                     | Jožef Stefan Institute, Slovenia                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Beneficiaries:                                   | Agenzia nazionale per le nuove<br>tecnologie (l'energia e lo sviluppo<br>economico sostenibile), AVL LIST<br>GmbH, Bitron SpA, Commissariat<br>à l'énergie atomique et aux énergies<br>alternatives, École Polytechnique<br>Fédérale de Lausanne, Haute Ecole<br>Spécialisée de Suisse occidentale,<br>SolydEra SA, Teknologian<br>tutkimuskeskus VTT Oy, Università<br>degli Studi di Salerno |  |  |  |

https://www.reactt-project.eu/

#### **PROJECT AND OBJECTIVES**

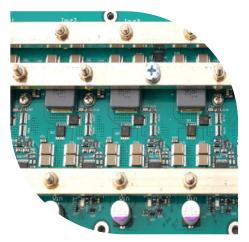
REACTT aims to realise a monitoring, diagnostic, prognostic and control (MDPC) tool and reversible solid oxide cell stacks and systems to increase stack lifetime by 5 %; reach a production loss rate of 1.2 %/1 000 h; increase availability by 3 %, targeting overall availability of 98 %; and reduce operation and maintenance costs by 10 %. The additional cost of the MDPC tool will not exceed 3 % of the overall system manufacturing costs. The development of the hardware platform and embedded diagnostics and prognostics algorithms is under way.

#### **NON-QUANTITATIVE OBJECTIVES**

- Education/training. The possible inclusion of the topic of solid oxide cell technologies in MSc and PhD study programmes was to be considered.
- Public awareness. The project web page and dissemination material are the first step towards raising public awareness.

**Safety.** Fault detection, isolation and mitigation in SOEC/SOFC preclude process disruption and potential hazards.

reac (tt


• **Regulations and standards.** The formulation of a new work item proposal set out in M12–M36 is to be submitted to Technical Committee 105 of the International Electrotechnical Commission.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

The first prototype of the MDPC board was developed.

#### **FUTURE STEPS AND PLANS**

An application for a project extension has been made. Delays in stack delivery are likely to result in delayed data acquisition from the longterm experiments under various degradation modes. The data are an important prerequisite for the design and validation of the diagnostic and prognostic algorithms.



| Target source       | Parameter                                | Unit                     | Target | Target achieved? | SoA result achieved to<br>date (by others) |  |
|---------------------|------------------------------------------|--------------------------|--------|------------------|--------------------------------------------|--|
|                     | Availability                             | %                        | 98     |                  | 95                                         |  |
| MAWP<br>(2014-2020) |                                          | €/(kg/d)/year            | 120    |                  | N/A                                        |  |
|                     | Electrical consumption at rated capacity | kWh/kg of H <sub>2</sub> | 39     | _                | 40-45                                      |  |







# REFHYNE

#### **CLEAN REFINERY HYDROGEN FOR EUROPE**

| Project ID:                                      | 779579                                                                                                                                              |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                             |
| Call topic:                                      | FCH-02-5-2017: Demonstration<br>of large electrolysers for bulk<br>renewable hydrogen production                                                    |
| Project total<br>costs:                          | EUR 19 759 516.50                                                                                                                                   |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 9 998 043.50                                                                                                                                    |
| Project period:                                  | 1.1.2018-30.6.2024                                                                                                                                  |
| Coordinator:                                     | SINTEF AS, Norway                                                                                                                                   |
| Beneficiaries:                                   | Element Energy Limited, ITM Power<br>(Trading) Limited, Shell Deutschland<br>GmbH, Shell Energy Europe Limited,<br>Sphera Solutions GmbH, SINTEF AS |

https://refhyne.eu/

#### **PROJECT AND OBJECTIVES**

The overall objective of REFHYNE is to deploy and operate a 10 MW electrolyser in a power-to-refinery setting. REFHYNE will validate the business model for using large-scale electrolytic hydrogen as an input to refineries, show the revenues available from primary and secondary grid balancing in today's markets and create an evidence base for the policy/regulatory changes needed to underpin the required development of this market. The electrolysers have been installed, and the plant has been tested and is ready for commissioning.

#### **NON-QUANTITATIVE OBJECTIVES**

- The project aims to make recommendations for policymakers and regulators on measures required to stimulate the market for these systems. One of the key outputs of the project is a suite of reports providing the evidence base for changes to existing policies. This will include specific analysis aimed at policymakers, recommending changes to existing policies.
- It aims to assess the legislative implications of these systems and their implications for regulations, codes and standards. REFHYNE will produce a detailed assessment of the consenting process for the system and any safety or codes and standards issues encountered.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

The electrolyser has been tested and operated at different modes of operation, up to 10 MW

(not analysed or uploaded). Lessons learned from the design, construction and initial operation have been summarised and published (not yet analysed or uploaded).

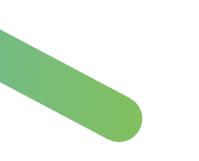
REFHYNE

#### **FUTURE STEPS AND PLANS**

- The full operation of the electrolyser, including dynamic response testing in grid connection mode, will begin. The system is ready for full operation. The main issue to be resolved is that of timing in relation to other site activities.
- REFHYNE will undertake economic and technical analysis of electrolyser performance. Data gathering, storage and transfer to relevant partners is not fully ready. However, data will be stored and made available for later analysis.
- The project will perform an environmental analysis of the electrolyser system and concept. The framework and models are in place, and analysis will begin once system data are available.



| Target source                                 | Parameter                                   | Unit       | Target | Target<br>achieved? | SoA result<br>achieved to date<br>(by others) | Year of SoA<br>target |
|-----------------------------------------------|---------------------------------------------|------------|--------|---------------------|-----------------------------------------------|-----------------------|
|                                               | Electricity consumption at nominal capacity | kWh/kg     | 52     |                     | 55                                            | 2020                  |
| Project's own objectives<br>and MAWP addendum | Capital cost                                | €/(kg/day) | 2 000  | -<br>               | 2 100                                         | 2020                  |
| (2018-2020)                                   | Degradation rate                            | %/1 000 h  | 0.15   |                     | 0.19                                          | 2020                  |
|                                               | Hot idle ramp time for $H_2$ production     | seconds    | 1      | _                   | 2                                             | 2020                  |








### REFLEX

### REVERSIBLE SOLID OXIDE ELECTROLYZER AND FUEL CELL FOR OPTIMIZED LOCAL ENERGY MIX



| Project ID:                                      | 779577                                                                                                                                                                                                                                           |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                                                                                          |
| Call topic:                                      | FCH-02-3-2017: Reversible solid<br>oxide electrolyser (rSOC) for resilient<br>energy systems                                                                                                                                                     |
| Project total<br>costs:                          | EUR 3 033 654.71                                                                                                                                                                                                                                 |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 2 999 575.25                                                                                                                                                                                                                                 |
| Project period:                                  | 1.1.2018-30.6.2023                                                                                                                                                                                                                               |
| Coordinator:                                     | Commissariat à l'énergie atomique et<br>aux énergies alternatives, France                                                                                                                                                                        |
| Beneficiaries:                                   | Aktsiaselts Elcogen, Danmarks<br>Tekniske Universitet, Engie,<br>Engie Servizi SpA, Green Power<br>Technologies SL, Parco Scientifico<br>Tecnologico per l'Ambiente SpA,<br>Sylfen, Teknologian tutkimuskeskus<br>VTT Oy, Universidad de Sevilla |

http://www.reflex-energy.eu/

#### **QUANTITATIVE TARGETS AND STATUS**

#### **PROJECT AND OBJECTIVES**

REFLEX aims to develop an innovative renewable energy storage solution, based on reversible solid oxide cell (rSOC) technology, that can operate in either electrolysis mode, to store excess electricity to produce  $H_2$ , or fuel cell mode, when energy needs exceed local production levels, to produce electricity and heat from  $H_2$  or any other fuel that is locally available. It has developed improved rSOC components (cells, stacks, power electronics, heat exchangers) and has defined the system, its set points and advanced operation strategies. An in-field demonstration will be performed in 2023.

#### **NON-QUANTITATIVE OBJECTIVES**

- The project aims to complete a techno-economic assessment.
- It also aims to create an inventory of regulations, codes and standards applicable to rSOC systems in France and Italy.

#### **PROGRESS AND MAIN ACHIEVEMENTS**

- Enlarged cells were produced.
- The project has improved the stack for rSOC operation.
- The rSOC module design was completed.
- The rSOC module assembly has started.
- · The site integration is almost complete.

#### **FUTURE STEPS AND PLANS**

- The modules and system assembly are being finalised.
- The installation of the system for an in-field test was planned for 2023.

| Target source               | Parameter                                                                                   | Unit              | Target                                | Achieved to date<br>by the project                                                     | Target<br>achieved? | SoA result achieved to<br>date (by others)                                 | Year of SoA<br>target |
|-----------------------------|---------------------------------------------------------------------------------------------|-------------------|---------------------------------------|----------------------------------------------------------------------------------------|---------------------|----------------------------------------------------------------------------|-----------------------|
|                             | Current density in SOEC mode                                                                | A/cm <sup>2</sup> | 1.2                                   | N/A                                                                                    | ίζζη<br>Ι           | – 1.15 at 750 °C, – 1 at<br>800 °C                                         | 2015-2016             |
|                             | Durability in SOEC step<br>during rSOC operation at<br>0.58 A/cm <sup>2</sup> and SC = 68 % | %/1 000 h         | 2                                     | 1.2                                                                                    | ίζζι<br>Ι           | 2.3 for current densities<br>of 0.6-0.7 A/cm <sup>2</sup> and<br>SC = 50 % | 2015                  |
| Project's own<br>objectives | Cell active area                                                                            | Cm <sup>2</sup>   | 200                                   | 200                                                                                    | $\checkmark$        | 128                                                                        | 2021                  |
| objectives                  | Power electronic efficiency                                                                 | %                 | 95                                    | 96                                                                                     | $\checkmark$        | 88                                                                         | 2019                  |
|                             | Power modulation<br>SC = 80 %                                                               | %                 | 50-100<br>(SOFC),<br>70-100<br>(SOEC) | 58–100 in SOEC,<br>13–100 in natural-<br>gas SOFC and<br>23–100 in H <sub>2</sub> SOFC | رې<br>ال            | 57-100 in SOEC                                                             | 2019                  |





## SWITCH

#### SMARTWAYSFORIN-SITUTOTALLYINTEGRATED ANDCONTINUOUSMULTISOURCEGENERATIONOF HYDROGEN



| Project ID:                                      | 875148                                                                                                                                                                                                 |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRD 2023:                                        | Panel 1 – H2 production                                                                                                                                                                                |
| Call topic:                                      | FCH-02-3-2019: Continuous<br>supply of green or low carbon H2<br>and CHP via solid oxide cell based<br>polygeneration                                                                                  |
| Project total<br>costs:                          | EUR 3 746 753.75                                                                                                                                                                                       |
| Clean H <sub>2</sub> JU<br>max.<br>contribution: | EUR 2 992 521.00                                                                                                                                                                                       |
| Project period:                                  | 1.1.2020-31.3.2024                                                                                                                                                                                     |
| Coordinator:                                     | Fondazione Bruno Kessler, Italy                                                                                                                                                                        |
| Beneficiaries:                                   | Deutsches Zentrum für Luft- und<br>Raumfahrt EV, École Polytechnique<br>Fédérale de Lausanne (EPFL),<br>HyGear BV, Shell Global Solutions<br>International BV, SolydEra SA, Sweco<br>Polska sp. z.o.o. |
|                                                  |                                                                                                                                                                                                        |

https://switch-fch.eu/

#### **PROJECT AND OBJECTIVES**

SWITCH aims to design, build and test a 25 kW (solid oxide fuel cell) / 75 kW (solid oxide electrolyser cell) system prototype for hydrogen production, operating in an industrial environment for 5 000 hours. The SWITCH system will be a stationary, modular and continuous multisource H<sub>2</sub>-production technology designed for H<sub>2</sub> refuelling stations. The core of the system will be a reversible solid oxide cell operating in electrolysis mode (SOE) and fuel cell mode (SOFC).

#### **NON-QUANTITATIVE OBJECTIVES**

- SWITCH aims to ensure the reliability and stability of power and hydrogen supply. A system with co-generation potential with substantial dynamic behaviour can deliver reliable and stable production of hydrogen and power to match demand-side management, securing the form of energy needed and connecting the generation profile to the end user.
- The project aims to ensure modularity through the development and validation of a 50 kg of H<sub>2</sub>/day technology, realised by integrating modules composed of high-reliability stack modules provided by SOLIDpower.
- SWITCH aims to ensure that the hydrogen purity level complies with ISO standard 14687. Hydrogen will be purified to within the range of 99.7–99.99 % and will have a water content of less than 5 parts per million.
- In-field testing in a relevant environment will be assured, with the final SWITCH system prototype being installed in a bench infrastructure and in a real operational environment. The system operation time will be 5 000 hours in the relevant environment.
- Life cycle analysis and life cycle cost analysis will help to evaluate the benefits of the SWITCH technology in comparison with state-of-the-art (SoA) steam methane reforming and other H<sub>2</sub>-production technologies (e.g. electrolysis).

#### **PROGRESS AND MAIN ACHIEVEMENTS**

 EPFL conducted the analysis on the SWITCH SOEC mode three damage impacts in OPENLCA and carried out a comparison of H<sub>2</sub>-production technologies including SOE, AEL, CH2P OM3 and steam methane reforming (SMR).

SWITC

- HyGEAR and SolydEra performed a hazard and operability analysis of the latest piping and instrumentation diagram.
- The cold balance of plant (BoP) and purification section have been designed and constructed.
- The hot BoP gamma has been finalised and successfully tested, and integrated in the SOE operating mode.
- The control system has been developed, and power electronics have been selected and acquired.
- The analysis of the experiments with the 25 kW LSM was finalised in work package 5. This included steadystate performance in electrolysis, polygeneration and fuel cell mode, and the analysis of the transient behaviour while switching between the modes. In addition, a transient model was developed and validated.
- A 1 000-hour durability test with daily switches between SOFC and SOE mode was performed by EPFL in work programme 5.
- Four articles have been published, with input from partners. The results have been presented in several conferences and workshops.

#### **FUTURE STEPS AND PLANS**

- The assembly of the full SWITCH system is in progress. Arrangements are being made to accommodate the testing of the full system at HyGear's premises. Initial work on operating condition optimisation has been carried out during the qualification test of the hot BoP and the LSM at SolydEra facilities.
- An exploitation workshop will be organised to enable work to start on the business model and business plan. The project consortium will apply for module B of the Horizon Results Booster to continue the activity related to the future exploitation of the SWITCH prototype. The focus will be on the business model and potential go-to-market strategy.

#### **QUANTITATIVE TARGETS AND STATUS**

| Target source            | Parameter                          | Unit    | Target | Achieved to<br>date by the<br>project | Target<br>achieved? | SoA result<br>achieved to<br>date (by others) | Year<br>of SoA<br>target |
|--------------------------|------------------------------------|---------|--------|---------------------------------------|---------------------|-----------------------------------------------|--------------------------|
| Project's own objectives | Electrolyser conversion efficiency | %       | 85     | 80                                    |                     | 80                                            | 2021                     |
|                          | Fuel cell conversion efficiency    | %       | 75     | _                                     |                     | 80                                            |                          |
|                          | Hydrogen cost                      | €/kg    | 5      | N/A                                   |                     | 11.2                                          |                          |
|                          | Stack lifetime                     | hours   | 10 000 |                                       |                     | 3 000                                         |                          |
|                          | Low switching time                 | minutes | 30     | 15                                    | $\checkmark$        | N/A                                           | N/A                      |





PRD 2023 PANEL H2 Production