H2 Zillertal: Zillertalbahn 2020+

VD Dipl.-Ing. Helmut Schreiner
Zillertaler Verkehrsbetriebe AG
Zillertalbahn
Austraße 1
6200 Jenbach
Österreich
Tel: +43 (0) 52 44 - 606-0
Fax: +43 (0) 52 44 - 606-39
E-Mail: helmut.schreiner@zillertalbahn.at

Dipl.-Ing. Nikolaus Fleischhacker
Green Energy Center Europe
FEN Sustain Systems GmbH
Technikerstraße 1a
6020 Innsbruck
Österreich
Tel: +43 (0) 512 209 039 11
Fax: +43 (0) 512 209 039 1
E-Mail: nikolaus.fleischhacker@green-energy-center.com

Im vorliegenden Artikel werden in einem Fahrzeugvergleich herkömmliche Oberleitungstriebzüge einem neu zu entwickelnden Wasserstoff-Elektrotriebwagenzug gegenübergestellt. Auch wird die für solche Züge notwendige Wasserstoff-Infrastruktur erläutert und dargestellt, wie eine Energiebereitstellung aus grünen Ressourcen Konkurrenzfähig zum Dieselbetrieb und auch Oberleitungsbetrieb erfolgen kann. Abschließend werden Aspekte der Sicherheit der Wasserstofftechnologie erläutert.

Dekarbonisierung und Attraktivierung der Zillertalbahn

Eigentümer und Betreiber der Bahn ist die „Zillertaler Verkehrsbetriebe AG“ mit Sitz in Jenbach. Mit gesamt 165 Mitarbeitern wird neben der Bahn auch eine Flotte von 50 Dieselbussen betrieben und einen Dampfzug für den touristischen Einsatz unterhalten.

Fahrzeugvergleich

- Wechselstrom-Oberleitungs-Hybrid-Elektrotriebwagenzug und
- Wasserstoff-Elektrotriebwagenzug

Weiters soll eine Fahrzeitverkürzung von derzeit 55 min auf 45 min für den Regelfahrplan bzw. 36 min für zusätzliche REX-Züge ermöglicht werden. Um diesen Fahrplan inkl. Sicherheiten abzudecken, sollen 6 Fahrzeuge angeschafft werden. Das führt weiter zu einer Betriebsdauer von ca. 3000 h je Fahrzeug.

Um die Fahrzeitverkürzung zu realisieren, ist vor allem ein hohes Beschleunigungsvermögen von 1 m/s² notwendig. Bei einer Antriebsleistung von 1000 kW kann dieses bis ca. 30 km pro h ermöglicht werden und nimmt anschließend mit steigender Geschwindigkeit begrenzt durch die Maximalleistung von 1000 kW ab.

Weiters sollen Betankungsvorgänge aufgrund der geringen Wendezahlen von 15 min nach Möglichkeit außerhalb der Betriebszeit einmal täglich erfolgen.

Basisvariante 0: Gleichstrom Elektrotriebwagenzug

Basis für alle weiteren Überlegungen ist ein Gleichstrom Elektrotriebwagenzug. Dieser wird mit 1500 V Gleichstrom (DC) aus der Oberleitung gespeist. Der 4-teilige Zug für die Spurwei-
te 760 mm mit einem minimalen Kurvenradius von 80 m ermöglicht eine Leistung am Rad von mehr als 1000 kW bei einer Anfahrzugskraft von 150 kN.

Diese Basisvariante stellt das einfachste Fahrzeug dar. Im Zug ist keine aufwändige Umrichtertechnik notwendig. Dafür ist aber die teuerste Fahrleitungsausstattung der vorgestellten Varianten mit zusätzlichen Infrastrukturannahmen notwendig.

Variante 1: Wechselstrom Oberleitungs-Hybrid-Elektrotriebwagenzug

Um den geforderten oberleitungslosen Betrieb in sensiblen Bereichen von Ortsdurchfahrten zu ermöglichen, werden bei der vorliegenden Variante zwei Traktionsakkus mit einem Speichervermögen von je 42 kWh netto und einer Leistung von je 300 kW in den Fahrzeugunterboden integriert. Die Versorgung der Bahn mit elektrischer Energie erfolgt über eine Oberleitung mit Wechselspannung (AC) mit einer Spannung von 25 kV bei 50 Hz [6]. Hierdurch werden zwei Gleichrichter mit je 700 kW je Steuerwagen notwendig, die ebenso im Fahrzeugunterboden integriert werden.

Die zusätzliche Technik im Fahrzeug führt zu einem Raummehrbedarf für ebendiese von ca. 0,25 % des Fahrzeugvolumens – 1,5 m³ bei 650 m³ – und einer Zusatzmasse von ca. 5 % – 6 Tonnen bei 113 Tonnen Gesamtmasse. Aufgrund der Integration massereicher Komponenten in den Unterboden ist die Kippstabilität der Schmalspurbahn sichergestellt.

Variante 2: Wasserstoff-Elektrotriebwagenzug

Die Versorgung des Zuges mit elektrischer Energie übernehmen 4 PEM¹-Brennstoffzellen (PEM-BZ) mit je 100 kW Leistung. Dabei werden je 2 BZ pro Steuerwagen für eine höhere Redundanz und Ausfallsicherheit in einem Technikraum parallel geschaltet. In den Brennstoffzellen werden der Sauerstoff O₂ der Luft und der am Fahrzeugdach gespeicherte Wasserstoff H₂ zu einer elektrochemischen Reaktion, zu elektrischer Energie und Wasserdampf in einer sogenannten kalten Verbrennung rekombiniert. Dabei können aus 1 kg H₂ ca. 17 kWh elektrische Energie gewandelt werden. Das entspricht einem Wirkungsgrad von ca. 50 %. Die garantierte Lebensdauer der evaluierten Schwerlast-Brennstoffzellen erreichen je nach Hersteller bis zu 25.000 Betriebsstunden.

Der notwendige Wasserstoff wird in Wasserstoffdrucktanks mit einem Nominaldruck von 350 bar Druck am Fahrzeugdach der Zwischenwagen gespeichert. Diese fassen gesamt 150 kg H₂. Diese Menge reicht aus um den Zug bei einem Wasserstoffbedarf von 0,3 kg H₂ pro km für einen Tag bis zur Betankung außerhalb der Betriebszeiten zu betreiben.

Um die für hohe Beschleunigungen notwendige Traktionsleistung von 1000 kW zu ermöglichen, werden zusätzlich zu den Brennstoffzellen mit 400 kW Pufferakkus mit einer Leistung von 2 x 300 kW und einem Speichervermögen von 2 x 42 kWh im Fahrzeugunterboden vorgesehen. Diese unterstützen somit bei Beschleunigungsvorgängen die Brennstoffzellen um zusätzliche 600 kW. Sie ermöglichen es weiteres, einen Großteil der kinetischen Energie des

¹ PEM steht für Proton Exchange Membrane
Fahrzeugs, die beim Bremsvorgang durch Rekupera tion in elektrische Energie gewandelt wird, zwischenzuspeichern.

Der im Vergleich zur Basisvariante notwendige zusätzliche Raumbedarf beträgt ca. 1 % – 6 m³ bei 650 m³ – bei einer Zusatzmasse von ca. 5 % – 6 Tonnen bei 113 Tonnen Gesamtmasse. Auch bei dieser Variante ist das Schwerpunktsproblem beherrschbar.

Der technische Mehraufwand der Fahrzeuge führt zu Mehrkosten von ca. 20 % zu Variante 1. Auch eine Wasserstoff-Infrastruktur für Elektrolyse, Speicherung, Distribution, Verdichtung und Betankung ist notwendig. Jedoch entfallen die hohen Investitionskosten der Fahrleitungsanlage von ca. 22 Mio. €.

Wasserstoff Infrastruktur und Herstellung

Für die Betankung wird wiederum aus Redundanzgründen und als zusätzliche Rückfallebene bei Streckenunterbrechungen bzw. geplanten Streckensperren eine HRS am Betriebsstandort Jenbach eingeplant. Deren Belieferung soll über Hochdruck-Wasserstoff- Trailer-LKWs realisiert werden.

Wasserstoff Herstellung

- aus Stromnetzregelung,
- dem Kauf günstiger elektrischer Energie auf der Strombörse zu Schwachlastzeiten (z.B. in der Nacht) und
- die Einbindung eines regionalen Laufwasserkraftwerkes mit Direktleitung

74
vor. Der produzierte Wasserstoff kann somit nicht nur als Brennstoff, sondern auch als Speicherstoff verstanden werden. Die Speicherfähigkeit erlaubt es damit sehr günstigen Strom für die Elektrolyse einzukaufen.

Variante 1 zur Wasserstoffherstellung für die Zillertalbahn sieht eine Eigenherstellung des Wasserstoffs durch die Zillertaler Verkehrsbetriebe AG vor. Hier wird der Strom direkt von der Strombörse bezogen. Eine derzeit gültige gesetzliche Ausnahmeregulierung für Elektrolyse und Pumpspeicherkraftwerke sieht für diese Anwendungen keine Netzgebühren vor, was sehr günstige Strompreise ermöglicht.

Szenario Oberleitung

In ersten Prognoserechnungen wurde der durchschnittliche Energiebedarf für die Variante Oberleitung mit 4022 MWh pro Jahr ermittelt. Durch das vorgegebene Bedarfsprofil sind bei der Energiebeschaffung hier keine Freiheitsgrade zur Optimierung vorhanden und aufgrund des Fahrbetriebs zu Peak-Zeiten von 06:00 bis 22:00 Uhr „hohe“ Energiekosten zu erwarten.

Szenario Wasserstoff

Sicherheit der Wasserstofftechnologie

Conclusio

Die Planmäßige Inbetriebnahme der neuen Garnituren soll mit Winterfahrplan 2022 erfolgen.

Literaturhinweise